#### TARGETING EZH2 WITH TAZEMETOSTAT IN FOLLICULAR LYMPHOMA

#### VINCENT RIBRAG

Chairman hematological multidisciplinary committee Ditep (chief molecular therapeutics in hematological early drug development)

Bologna Lymphoma meeting, May 2017







#### **Disclosures of Ribrag Vincent**

| Company<br>name | Research<br>support | Employee | Consultant | Speakers<br>bureau | Advisory<br>board |
|-----------------|---------------------|----------|------------|--------------------|-------------------|
| Servier         |                     |          | х          |                    |                   |
| Argen X         | x                   |          |            |                    |                   |
| Epizyme         | x                   |          |            |                    | x                 |
| Incyte, Roche   |                     |          |            |                    | x                 |
| Esai, Gilead    |                     |          |            |                    | x                 |
| Nanostring      |                     |          |            |                    | x                 |
| BMS, MSD        |                     |          |            |                    | x                 |
| Infinity        |                     |          |            |                    | x                 |

## Tazemetostat, Mechanism of Action

- EZH2 is the catalytic subunit of the multi-protein PRC2 (<u>Polycomb Repressive Complex 2</u>), which generates mono-, di- and tri-methylation of H3K27.
  - H3K27me3 is a transcriptionally repressive histone mark, and H3K27 is the only significant substrate for PRC2
- Aberrant trimethylation of H3K27 is oncogenic in a broad spectrum of human cancers, such as B-cell NHL.
- Mutations in other proteins that affect H3K27 and chromatin accessibility in general are prevalent across almost all cancer types.
- Tazemetostat (EPZ-6438) is a potent and highly selective EZH2 inhibitor with antitumor activity in a variety of hematologic malignancies and solid tumors models, including FL and DLBCL.



# Tazemetostat, Mechanism of Action

- EZH2 is the catalytic subunit of the multi-protein PRC2 (<u>Polycomb Repressive Complex 2</u>), which generates mono-, di- and tri-methylation of H3K27.
  - H3K27me3 is a transcriptionally repressive histone mark, and H3K27 is the only significant substrate for PRC2
- Aberrant trimethylation of H3K27 is oncogenic in a broad spectrum of human cancers, such as B-cell NHL.
- Mutations in other proteins that affect H3K27 and chromatin accessibility in general are prevalent across almost all cancer types.
- Tazemetostat (EPZ-6438) is a potent and highly selective EZH2 inhibitor with antitumor activity in a variety of hematologic malignancies and solid tumors models, including FL and DLBCL.



### EZH2 Activating Mutations and Other Genetic Lesions in Follicular Lymphoma and DLBCL



#### EZH2 Activating Mutations Cause Elevated H3K27me3 Levels and are Dependent on EZH2 Activity



### Anti-proliferative Synergy of Tazemetostat and Corticosteroids



Preclinical observation builds the foundation for clinical development strategies

# Tazemetostat Clinical Experience: phase 1

- RP2D has been selected as 800 mg BID based on safety, efficacy, PK, and PD
  - MTD not reached across doses explored
    - 100 1600 mg BID PO
    - 1 DLT observed (grade 4 thrombocytopenia) at 1600 mg BID
  - Safety, broadly tolerable mainly constitutional AE's
  - PK parameters ( $C_{max}$  and  $AUC_{0-12h}$ ) dose proportional at steady state through 1600 mg dose
  - Evidence of target inhibition (reduction in H3K27me3 staining) in post dose tumor biopsies at 800 and 1600 mg BID
  - PK-PD relationship explored in pre- and post dose skin biopsies across full dose range explored
    - Reductions in post dose H3K27me3 dependent on dose of tazemetostat and skin layer analyzed
    - Reduction in post dose H3K27me3 comparable for 800 and 1600 mg doses

# Tazemetostat Phase 1, clinical activity



## Tazemetostat Ongoing Phase 2 NHL Study Design

#### Study designed to assess clinical activity and safety of tazemetostat in five NHL subtypes and determine potential registration path for each subtype

- Global, multi-center, open-label study in 6 cohorts of patients with R/R DLBCL or FL Patient stratification based on EZH2 mutational status and cell of origin
  - All patients treated with  $\geq$  2 prior therapies
- Primary endpoint: overall response rate
  - Secondary endpoints: progression-free survival (PFS) and duration of response
- Study expanded to 340 patients total
  - 60 patients in each DLBCL cohort; 45 patients in each FL cohort for monotherapy
  - 70 patients in DLBCL cohort for combination with prednisolone



# Adverse Events Led to Low Rate of Dose Reductions and Discontinuations

| Patients<br>(n=82)                 | All Adverse<br>Events (AEs)* | Treatment-<br>Related AEs |  |
|------------------------------------|------------------------------|---------------------------|--|
| Adverse Event (any)                | 65 (79%)                     | 41 (50%)                  |  |
| Grade ≥ 3                          | 23 (28%)                     | 13 (16%)                  |  |
| Serious AE                         | 15 (18%)                     | 8 (10%)                   |  |
| AE Leading to Dose Interruption    | 18 (22%)                     | 12 (15%)                  |  |
| AE Leading to Dose Reduction       | 3 ( 4%)                      | 2 ( 2%)                   |  |
| AE Leading to Drug Discontinuation | 5 ( 6%)                      | 2 ( 2%)                   |  |

\* All treatment emergent adverse events that first appear during treatment, which were absent before or which worsen relative to the pre-treatment

Morschhauser, et al. ASH Lymphoma Biology 2016,

## Tazemetostat Demonstrated Favorable Safety Profile in Phase 2 Patients

|                                      | All Adverse E | <b>Treatment-Related AEs</b> |            |           |
|--------------------------------------|---------------|------------------------------|------------|-----------|
| Patients (n=82) with AE <sup>1</sup> | All Grades    | Grade ≥ 3                    | All Grades | Grade ≥ 3 |
| Nausea                               | 15 (18%)      | 0                            | 11 (13%)   | 0         |
| Cough                                | 11 (13%)      | 0                            | 1 ( 1%)    | 0         |
| Asthenia                             | 9 (11%)       | 0                            | 8 (10%)    | 0         |
| Thrombocytopenia                     | 9 (11%)       | 3 ( 4%)                      | 7 ( 9%)    | 2 ( 2%)   |
| Fatigue                              | 7 ( 9%)       | 3 ( 4%)                      | 4 ( 5%)    | 1 ( 1%)   |
| Neutropenia                          | 7 ( 9%)       | 5 ( 6%)                      | 6 ( 7%)    | 4 ( 5%)   |
| Constipation                         | 5 ( 6%)       | 0                            | 1 ( 1%)    | 0         |
| Diarrhoea                            | 5 ( 6%)       | 0                            | 3 ( 4%)    | 0         |
| Insomnia                             | 5 ( 6%)       | 0                            | 2 ( 2%)    | 0         |
| Lung infection                       | 5 ( 6%)       | 1 ( 1%)                      | 1 ( 1%)    | 0         |
| Vomiting                             | 5 ( 6%)       | 0                            | 1 ( 1%)    | 0         |
| Hyperglycaemia                       | 4 ( 5%)       | 1 ( 1%)                      | 1 ( 1%)    | 0         |
| Lethargy                             | 4 ( 5%)       | 0                            | 1 ( 1%)    | 0         |
| Urinary tract infection              | 4 ( 5%)       | 0                            | 2 ( 2%)    | 0         |

\*All treatment emergent adverse events that first appear during treatment, which were absent before or which worsen relative to the pre-treatment; adverse events reported in  $\geq$ 5% of patients

Morschhauser, et al. ASH Lymphoma Biology 2016,

# Evolution of Tumor Response and Preliminary Efficacy Assessment



# Objective Response in Follicular Lymphoma Patient with EZH2 Y646N Mutation

61-yr, male



Baseline:  $38 \times 26 = 988$ 



Week 16: 27 x 17 = 459, -53%: PR



Morschhauser, et al. ASH Lymphoma Biology 2016, updated

#### Summary

- Tazemetostat is a first-in-class, potent, and specific inhibitor of EZH2
- Tazemetostat has been generally well tolerated in patients
  with cancer including NHL
- Encouraging clinical activity has been observed with tazemetostat monotherapy, particularly in lymphomas with activating mutations of EZH2
- Clinical investigation with tazemetostat monotherapy and combination with prednisolone and R-CHOP is ongoing.